top of page

Hemoglobin purification

  • xyli83
  • Jan 16, 2017
  • 3 min read

Medicilon's protein scientists have been working on protein expression and purification for many years. We can start your project even you have nothing in hand but the name of your protein. In Medicilon's laboratories, protein purification is performed in scales from micrograms and milligrams. All Protein Purification Services start with the analysis of physico-chemical and biological properties of a target protein resulting in the development of tailored procedures for its extraction, purification and characterization. More Information》》

This invention relates to a method of hemoglobin protein purification. More particularly, the present invention relates to a novel method for removing stromal particles and phospholipids from human outdated blood and animal bloods to obtain purified hemoglobin, which can be used in substitute blood applications.

Blood substitute has recently received a great deal of attention due to its potential application to solving the blood shortage problems as well as providing an expeditious means allowing blood transfusion during wars or other emergency situations. Blood substitute can also find applications in many other situations, such as in preventing the spreading of diseases such as AIDS, hepatitis B, etc.; in the treatment of certain blood diseases; for organ preservation prior to organ transplants: in animal blood transfusion; as well as in perfusion for artificial organs.

In order to serve the above indicated functions, a blood substitute must provide the essential capacity to carry and release oxygen in an animal body. Current research attention in the development of suitable blood substitute has been focusing on utilizing hemoglobin as the base material, by reprocessing the same using polymerization or encapsulation technique so that it can be used. There have also been research efforts in developing plasma substitutes prepared from artificially synthesized oxygen-carrying material. However, at the present time, the artificially prepared oxygen-carrying material has not been able to provide the same level of functionality as the naturally occurring hemoglobin, and thus is unable to satisfy the physiological oxygen transport requirement in animal bodies.

Hemoglobin existing in outdated human or animal bloods has been under continuous evaluation for its potential application as a blood substitute. Separation and purification of hemoglobin from mammalian bloods and reprocessing them into oxygen carrying red blood cells provide an immense potential in supplying large quantities of blood substitute. Regardless of its source, the hemoglobin must go through a series of separation steps to remove protein contaminants and stroma (containing phospholipids), which, among other things, can stimulate human body and cause undesirable side effects, and thus increase the purity of hemoglobin.

A number of methods for hemoglobin protein purification have been available in the course of the development of blood substitute. In the early stages, high-speed centrifugation and ultrafiltration were the most widely used techniques. These methods, however, can only provide a very crude separation; many contaminants still exist in the hemoglobin solution after the purification treatment.

In 1967, Rabiner developed a method for hemoglobin purification, Rabiner, S. F., et al.: Evaluation of a stroma-Free hemoglobin solution for use as a plasma expander, J. Exp. Med. 126, 1127-1142 (1967). First, red blood cells were separated from outdated human whole blood by centrifugation and then washed with saline. Distilled water or organic solvents with low osmotic pressure were then added thereto to hemolyze the red blood cells. Hemoglobin would be released as a result of hemolysis of the red blood cells. Then the solution was subject to a high-speed centrifugation at 35,000 g to precipitate and remove cell membrane stroma. Finally the solution was filtered through 0.1 μm filter membrane to obtain purified hemoglobin. The Rabiner method is only capable of removing stromal particles that are relatively large; it, however, does not remove other proteins in the red blood cell and smaller cell membrane particles.

Drabkin and DeVenuto respectively developed crystallization methods for hemoglobin purification, both of which involved the first step of separating plasma and washing blood cells see, DeVenuto, F., et al.: Characteristics of stroma-free hemoglobin prepared by crystallization, J. Lab. Clin. Med. 89: 509-16 (1977). Then the red blood cells were hemolyzed to release hemoglobin. A relatively low-speed centrifugation, at 4,000 g, was applied to the hemolysate to remove relatively larger stromal particulate matter. Then a high concentration phosphate buffer was added to the solution to salt out hemoglobin, which is then subject to a crystal growth to obtain high purity hemoglobin. Because the crystal growth is a very time-consuming process, mass production utilizing this technique is difficult, and it is not practical to use this process to obtain large amount of high purity hemoglobin.


 
 
 

Comments


  • Facebook Black Round
  • Google+ - Black Circle
  • Twitter - Black Circle
Rob Amstel -
Entrepreneur, Speaker & Author

I'm a paragraph. Click here to add your own text and edit me. Let your users get to know you.

Business Plan
Writing A-Z

 

FREE COURSE
(Valued at $250)
 

Learn all you need in order to create a stellar business plan
for your endeavor!

Business Plan

Writing A-Z

 
FREE COURSE
(Valued at $250)
 

Learn all you need in order to create a

stellar business plan for your endeavor!

My Book
 

I'm a paragraph. Click here to add your own text and edit me. Let your users get to know you.

Search By Tags

© 2023 by Walkaway. Proudly created with Wix.com

  • Facebook Black Round
  • Google+ - Black Circle
  • Twitter Black Round
bottom of page