METHOD AND SYSTEM FOR PLANNING, PERFORMING, AND ASSESSING
- xyli83
- Jan 25, 2017
- 3 min read
Medicilon is a Preclinical Research Outsourcing (CRO) company. With our more than 10 years experience on preclinical research services, we dedicated to provide our clients with customized preclinical services program in drug metabolism, pharmacokinetics, efficacy studies, and toxicology. We provide our clients a high-quality data and rapid turnaround time to support their drug development, preclinical studies and clinical research and to help them to select the most valuable drug candidates into clinical trials stage. Our preclinical research services consist in three major parts: pharmacokinetics, disease transplantation models and drug safety evaluation. Our services cover all of the aspects including design, in vivo studies, sample analysis, professional data analysis, IACUC review, and the preparation of application materials.Email:marketing@medicilon.com.cn Web:www.medicilon.com
The goals of the preclinical or nonclinical safety evaluation include: characterization of toxic effects with respect to target organs, dose dependence, relationship to exposure, and potential reversibility. This information is important for estimating an initial safe starting dose for the human trials and the identification of parameters for clinical monitoring for potential adverse effects.
Preclinical research or testing includes, but is not limited to API synthesis, chemical and physical characterization of API, pharmacology, toxicology, metabolism, bioanalysis, pharmaceutical analysis, and biosafety testing. Preclinical research can also encompass studies that relate to the transition from preclinical to clinical, including Phase I studies, which typically provide a preliminary evaluation of a compounds safety, tolerance, and pharmacokinetics. In addition, preclinical research is carried out throughout all phases of the drug research and development process, and thorough preclinical research or testing maximizes the likelihood that a drug will be successful in the clinical phases of the process.
Chemical and physical characterization of a compound (or API) during the preclinical phase can include, but is not limited to: identification (e.g., by spectroscopic analysis); determining chromatographic purity; hygroscopocity determination; solubility studies; pKa determination; partitioning studies; characterization studies; short-term or accelerated stability; early formulation and excipient compatibility studies; developing chromatographic analysis of the API; residual solvents identification and quantitation; and reference standard certification.
Preclinical pharmacology and toxicology studies can include, but are not limited to, studies on or of: the pharmacological actions of the compound relating to its proposed therapeutic indication(s); defining the pharmacological properties of the compound; possible adverse effects of the compound; the toxicological effects of the compound relating to the compound's intended clinical uses, including without limitation assessing acute, sub-acute, and chronic toxicity (including single and repeated dose toxicity studies), and carcinogenicity; toxicities related to the compound's particular mode of administration or conditions of use; local tolerance; the effects of the compound on reproduction and on developing fetuses, or reproduction toxicity; genotoxicity; and the absorption, distribution, metabolism, and excretion of the compound in animals.
Metabolism studies relate to determining how a compound is absorbed, distributed, metabolized, and eliminated (ADME) from the body. In general, the early work on metabolism is carried out in in vitro studies, which are then followed by in vivo studies using relevant small and large animal models, and such studies (particularly in small animals) can include whole-body autoradiography (WBA), which can provide qualitative &/or quantitative representations of a compound's distribution in the animal. In addition in vitro and animal studies, human metabolism (AME) can be studied in human clinical trials using C14 or another radiolabeled form of the compound.
Safety pharmacology studies in general are studies that investigate the potential undesirable pharmacodynamic effects of a compound on physiological functions when a subject is exposed to the compound in the proposed therapeutic dosage range and above. The goals of safety pharmacology studies include (1) identifying undesirable pharmacodynamic properties that may have relevance to human safety, (2) evaluating adverse pharmacodynamic and/or pathophysiological effects of a compound observed in toxicology and/or clinical studies, and (3) investigating the mechanism or mode of action of observed and or suspected adverse pharmacodynamic effects.
Some safety pharmacology determinations or endpoints may be incorporated into the design of a various toxicology, pharmacokinetic, and clinical studies, while in other cases specific safety pharmacology studies are needed. The specific safety pharmacology studies that should be conducted and their design will vary based on the individual properties and intended uses of a compound or pharmaceuticals, but in general, factors to be considered when determining what safety pharmacology studies are needed include, but are not limited to: adverse effects related to the therapeutic class of the API, as the mechanism of action of the API may suggest certain adverse effects; adverse effects associated with members of the chemical or therapeutic class, but independent of the primary pharmacodynamic effects; ligand binding or enzyme assay data suggesting a potential for adverse effects; results from previous safety pharmacology studies, from secondary pharmacodynamic studies, from toxicology studies, or from human use that suggest further investigation to establish and characterize the relevance of the findings to potential adverse effects in humans.
Comments