top of page

Peripheral Administration of Proteins’

  • xyli83
  • Jan 25, 2017
  • 4 min read

Medicilon is a Preclinical Research Outsourcing (CRO) company. With our more than 10 years experience on preclinical research services, we dedicated to provide our clients with customized preclinical services program in drug metabolism, pharmacokinetics, efficacy studies, and toxicology. We provide our clients a high-quality data and rapid turnaround time to support their drug development, preclinical studies and clinical research and to help them to select the most valuable drug candidates into clinical trials stage. Our preclinical research services consist in three major parts: pharmacokinetics, disease transplantation models and drug safety evaluation. Our services cover all of the aspects including design, in vivo studies, sample analysis, professional data analysis, IACUC review, and the preparation of application materials.Email:marketing@medicilon.com.cn Web:www.medicilon.com

As is explained elsewhere herein, aspects of the invention further include a protein formulation suitable for minimally-invasive systemic delivery, including formulation parameters such as pH, excipients and/or concentration to name but a few, as well as the rate of administration of such formulations and effective dosages of the same accomplished via manipulation of formulation parameters and/or rates of administration.

Given the availability of preclinical evidence confirming that a number of systemic disease states could benefit from BMP therapy, the importance of the above-described minimally-invasive approach to systemic therapy can not be underestimated. In particular, metabolic bone diseases including mineralized as well as non-mineralized tissues affected thereby are of significant importance. Additionally, preclinical research confirms a number of systemic disease states for which BMP therapy can be beneficial including tissues and/or organs affected by diseases or disorders such as chronic and acute kidney disease, atherosclerosis, pulmonary fibrosis, obesity, diabetes, cancer, ocular scarring, liver fibrosis, inflammatory disorders and nervous system disorders.

Given the availability of preclinical evidence confirming that a number of systemic disease states could benefit from BMP therapy, the importance of the above-described minimally-invasive approach to systemic therapy can not be underestimated. In particular, metabolic bone diseases including mineralized as well as non-mineralized tissues affected thereby are of significant importance. Additionally, preclinical research confirms a number of systemic disease states for which BMP therapy can be beneficial including tissues and/or organs affected by diseases or disorders such as chronic and acute kidney disease, atherosclerosis, pulmonary fibrosis, obesity, diabetes, cancer, ocular scarring, liver fibrosis, inflammatory disorders and nervous system disorders.

As explained earlier, when an agent such as a TGFβ family member is injected directly into a peripheral blood vessel via a needle and syringe or using a standard intravenous temporary catheter (a catheter and needle delivery device), this is associated with marked local effects including but not limited to edema, fibrosis, and formation of bone and/o cartilage in and around the vessel and perivascular tissues at the site of the introduction of the needle and/or catheter (e.g., the venipuncture site). In contrast, directed delivery of the same protein via a peripheral catheter extending into the vessel's lumen for about 2 or more cm, for example, past the site of vessel puncture the typical undesired effects of edema, fibrosis, and formation of bone and/or cartilage in and around the vessel and/or perivascular tissues are absent or significantly diminished at the immediate site of the introduction of the needle and/or catheter. As will be understood by one of skill in the art, distance traversed is dependent upon the size of the species receiving the protein intravascularly; e.g., an entire rat may be about 8 cm in length head to tail whereas the upper forelimb of a dog may itself measure 8 cm.). A typical arm or hand blood vessel in an adult human has a straight length such that from the site of needle trauma at the site of administration, the tip of the catheter can be inserted at least 2 cm beyond the point of administration prior to delivery. In a further embodiment, a catheter can be introduced at least 2 cm beyond the distal tip of a fully inserted introducing needle prior to delivering the substance.

Moreover, as is explained elsewhere herein, aspects of the invention further include a protein formulation suitable for minimally-invasive systemic delivery, including formulation parameters such as pH, excipients and/or concentration to name but a few, as well as the rate of administration of such formulations and effective dosages of the same accomplished via manipulation of formulation parameters and/or rates of administration.

While current clinical applications of proteins such as BMPs, as well as other members of the TGF-β superfamily of tissue morphogens, are limited to local, surgically-invasive implantation for inducing local bone growth and repair, preclinical research confirms a number of systemic disease states for which BMP therapy can be beneficial. These include but are not limited to applications in metabolic bone diseases including mineralized as well as non-mineralized tissues affected thereby. Additionally, preclinical research confirms a number of systemic disease states for which BMP therapy can be beneficial including tissues and/or organs affected by diseases or disorders such as chronic and acute kidney disease, atherosclerosis, pulmonary fibrosis, obesity, diabetes, cancer, ocular scarring, liver fibrosis, inflammatory disorders and nervous system disorders. In accordance with the treatment of such diseases using the present invention, non-local administration of BMP-7 is now appreciated to be the optimal approach. However, the present invention further confirms that conventional, currently-employed methods of systemic administration, such as direct peripheral administration (e.g., via subcutaneous, intramuscular or intraperitoneal administration; further including intravenous administration using a syringe equipped with a traditional syringe needle) can have undesirable effects, including the formation of ectopic bone and/or fibrous tissue at the injection site and/or inducement of localized tissue trauma such as for example peripheral edema. As is explained elsewhere herein, the present invention relates to heretofore-undescribed methods for circumventing such undesirable effects and facilitate minimally-invasive systemic delivery of a biologic agent, especially a proteinaceous macromolecule such as but not limited to a BMP. It is further understood that minimally-invasive systemic delivery as contemplated herein does not include oral, parenteral or topical delivery.


 
 
 

Comments


  • Facebook Black Round
  • Google+ - Black Circle
  • Twitter - Black Circle
Rob Amstel -
Entrepreneur, Speaker & Author

I'm a paragraph. Click here to add your own text and edit me. Let your users get to know you.

Business Plan
Writing A-Z

 

FREE COURSE
(Valued at $250)
 

Learn all you need in order to create a stellar business plan
for your endeavor!

Business Plan

Writing A-Z

 
FREE COURSE
(Valued at $250)
 

Learn all you need in order to create a

stellar business plan for your endeavor!

My Book
 

I'm a paragraph. Click here to add your own text and edit me. Let your users get to know you.

Search By Tags

© 2023 by Walkaway. Proudly created with Wix.com

  • Facebook Black Round
  • Google+ - Black Circle
  • Twitter Black Round
bottom of page