Materials and methods for treating oncological disorders
- xyli83
- May 17, 2017
- 3 min read
Medicilon's structural biology department offers services supporting structure-based drug discovery from determination of novel targets to final structures. Our platform is one of the earliest established structural biology platforms in China and has been certified by the Shanghai Government. Email:marketing@medicilon.com.cn Web:www.medicilon.com
The subject invention pertains to materials and methods for treating oncological disorders. The subject invention also pertains to materials and methods for preventing or reducing the development by cancer cells of resistance to an anticancer therapy, such as chemotherapy, radiotherapy and/or immunotherapy. In one embodiment, a patient is treated with an agent that inhibits cholesterol synthesis or that prevents or reduces the increase in cholesterol synthesis observed in therapy-resistant cancer cells. In another embodiment, a patient is treated with an agent that increases the expression, activity, or amount of a Bim protein in a cell. In another embodiment, a patient is treated with an agent to inhibit or reduce cancer cell adhesion to extracellular matrices or stromal cells. In another embodiment, a patient is treated with an agent to inhibit expression of a gene of function of a protein of the FANC/BRCA pathway. In a further embodiment, a patient is treated with an agent to prevent or reduce the DNA crosslink repair function of a cell.
Many forms of cancer typically respond to initial treatment. However, some cancers, such as multiple myeloma, are not cured by chemotherapy, and invariably drug resistance emerges (Dalton et al., 1992; Kyle et al., 1982). Traditional in vitro unicellular models of melphalan resistance have identified several acquired melphalan resistance mechanisms including: 1) reduced drug uptake 2) reduced DNA damage, and 3) changes in glutathione levels (Dalton et al., 1992; Bellamy et al., 1991; Gottesman et al., 2002). However, it is currently unclear if these mechanism(s) play a causative role in clinical drug resistance. Moreover, it is not known if drug resistance mechanisms identified following chronic drug exposure (acquired drug resistance) allow for tumor cell survival following initial drug treatment (de novo drug resistance).
Evidence supporting the importance of understanding the influence of the tumor microenvironment on drug sensitivity has been reported by Teicher et al. (1990). These investigators showed that in vivo selection of EMT-6 cells with alkylating agents, results in a drug-resistant phenotype that is operative only in vivo. The tumor microenvironment consists of soluble factors (cytokines), as well as, cell surface receptors (cell adhesion molecules) both of which can influence cellular fate following cytotoxic exposure. More recently, it has been shown that adhesion of tumor cell lines to fibronectin (FN) via β1 integrins contributes to a reversible, de novo drug design resistance termed “cell adhesion mediated drug resistance or CAM-DR” (Damiano et al., 1999; Sethi et al., 1999). Adhesion via β1 integrins is known to activate a network of signal transduction pathways that influence cell survival, growth and differentiation (Hanks et al., 1992; Lin et al., 1997; Meng et al., 1998; Meredith et al., 1993). Although the signaling pathway(s) causative for drug resistance have not been entirely delineated, several intracellular targets have been identified that are influenced by β1 integrin adhesion and may contribute to inhibition of programmed cell death induced by either cytotoxic drugs or cell surface death receptors (e.g., CD95). These targets include the following: alterations in the nuclear pool of topo IIβ, increased p27kip1 levels, and changes in the availability of Flip1 binding to FADD (Hazlehurst et al., 2000a; Hazlehurst et al., 2001; Shain et al., 2002). All of these changes occur before toxic or stressful insult.
Interstrand cross-links (ICL) are amongst the most toxic types of DNA damages; therefore, DNA cross-linking agents are important drugs in cancer treatment (Dronkert and Kanaar, 2001). Melphalan, a DNA crosslinker, is one of the most widely used and effective drugs in the treatment of multiple myeloma (MM). Unfortunately, although most patients respond to standard and high dose melphalan therapy, eventually patients will acquire drug resistance. Acquired melphalan resistance is associated with reduced DNA crosslinks, elevated levels of glutathione and increased radiation survival.
Comments